


A NPDA (Nondeterministic PushDown Automata) Is a
/-tuple
M= (Q,S,G, d,s, L, F) where

Q is a finite set (the states)

S is a finite set (the input alphabet)

G Is a finite set (the stack alphabet)

dc (Q X (SU{e}p)x G) x (Q x G*) iIs the transition relation

S € Q Is the start state

1 € G is the initial stack symbol

F < Q is the final or accept states

((p,a,A),(q,B,B.,...B,)) € d means that

whenever the machine is in state p reading input symbol a on the mput
tape and A on the top of the stack, it pops A off the stack, push B;B
onto the stack (B, first and B, Iast) move its read head rlght one ceﬁl past
the one storing a and enter state g.

((p,e,A),(q,Ble Bk)) c d means similar to

((p a A) (q, )) e d except that it need not scan and
consume any mput sym olf



Collection of information used to record the
snapshot of an executing NPDA
an element of Q x S* x G*.

Configuration C = (g, X, W) means

the machine is at state q,

the rest unread input string is X,

the stack content is w.
Example: the configuration (p, baaabba,
ABAC_L) might describe the situation:

ababbaaabb a /
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Given a NPDA M and an input string X, the
configuration (s, X, 1) iIs called the start
configuration of NPDA on Xx.

CFy =gef @ X S* X G* Is the set of all possible
configurations for a NPDA M.

One-step computation ( -->,, ) of a NPDA:
(p’ ay, Ab) —--= M (q’ Y. 0 b’ for each ((p,a,A), (q’ g)) e d. (1)
(p’ Y, Ab) —--= M (q’ Y, 9 b’ for each ((p,e,A),(q, g)) ed. (2)
Let the next configuration relation -->,, on CF,,> be the set of
pairs of configurations satisfying (1) and (2).
-->,, describes how the machine can move from one

configuration to another in one step. (i.e., C -->, D iff D can
be reached from C by executing one instruction)

Note: NPDA is nhondeterministic in the sense that for each C
there may exist multiple D’s s.t. C -->, D.



Given a next configuration relation -->,:

Define --->n,, and --->%*,, as usual, I.e.,

C--=>0,D iff C=D.

C-->n+l iff $E C-->",, E and E-->,, D.

C-->*,D iff $n>0C --=>n, D.

l.e., ---=>*_ IS the ref. and trans. closure of --> , .
Acceptance: When will we say that an input
string X Is accepted by an NPDA M?

two possible answers:

1. by final states: M accepts x ( by final state) Iff

(s,X, L) --=*,, (p,e, a) for some final state p € F

2. by empty stack: M accepts X by empty stack iff

(s,x, L) --=*,, (p,e, e) for any state p.

Remark: both kinds of acceptance have the same expressive
power.



M= (Q,S,G,d,,F) : a NPDA.
The languages accepted by M is defined as follows:
1. accepted by final state:
L:(M) = {x | M accepts x by final state}
2. accepted by empty stack:
L.(M) = {x | M accepts x by empty stack}.
3. Note: Depending on the context, we may sometimes
use L; and sometimes use L, as the official definition of the
language accepted by a NPDA. I.e., if there is no worry of

confusion, we use L(M) instead of L_(M) or L(M) to denote
the language accepted by M.

4. In general L,(M) = L(M).



Ex 23.1 : M;: A NPDA accepting the set of balanced
strings of parentheses [ ] by empty stack.
M, requires only one state q and behaves as follows:
1. while input is ‘[* : push ‘[* onto the stack ;
2. while input is ‘]’ and top is ‘[’ : pop
3. while input is ‘€ and top is L : pop.
Formal definition: Q ={qg}, S={[.1},. 6= {[, L},
start state = g, Initial stack symbol = 1.

d={ (@[ D, @ [1)), (.l D. (. ID),

(.1, D. (g, €)), /] 2

(e l),(@9e) 3} //3
Transition Diagram representation of the program d:

((p.aA), (9,B..B))ed=>
This machine Is not deterministic. Why ?

@ a,A/B,...B, >@
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let iInput X =
successful corrEp[uEa%tl]oL ]o¥ IE/I1 on X:
(qE[[]][]][] 1)
configuration
-—>u (@, [[L11L11L[1 [ 1)
transmon ()
-->M(q, 110110L) LD
-->\ (g, IC11L0) [LD
-->\ (g, L1111 [1)
-->\ (g, 1111, [[L)
-->\ (g, 11L1 [ 1)
__>M (q1 []1 J—)
__>M (q1 ]1 [J—)
--=>\ (g, ; 1)
--=>\ (g, )

accepts by empty stack

]. Then below iIs a

- the start

instruction or

transition (ii)
transition (ii)
transition (iii)
transition (iii)
transition (ii)
transition (iii)
transition (iii)
transition (i)
transition (iii)
transition (iv)



Note besides the above successful computation,
there are other computations that fail.

Ex: (9, [LL]11IL11I11. 1) : the start

configuration

__>*M (q1 []1 J—) o _

>, (0, [1 )  transition (iv)

a dead state at which the input is not empty and
we

cannot move further === failure!!

Note: For a NPDA to accept a string X, we need only
one successful computation (i.e., $D = (_, g, e) with
empty input and stack s.t. (s,x,l) --=>*, D. )

Theorem 1: String X € {[,]}™ Is balanced Iiff it Is
accepted by M, by empty stack.



Definitions:

A string X Is said to be pre-balanced if L(y) > R(y) for
all prefixes y of x.

A configuration (g, z, a) is said to be blocked if the
pda M cannot use up input z, i.e., there Is no state r
and stack b such that (q, z, a) 2>* (r, e Db).

Facts:

1. If initial configuration (s, z, 1) is blocked then z is
not accepted by M.

2. If (q, z, a) is blocked then (g, zw, a) is blocked for
all w e S*.
Pf: 1. If (s, z, 1) is blocked, then there is no state p, stack b such that
(s, z,1) --=>* (p, e, b), and hence z Is not accepted.
2. Assume (g, zw, a) Is not blocked, then there must exists
Intermediate cfg (p, w, a') such that (g, zw,a »>* (p, w, a') 2* 1, e,

b) But (g, zw, a >* (p, w, a') implies (g, z,a >* (p, e, a") and (q,
z, a) Is not blocked.



Lemma 1: For all strings z,X,
if z is prebalanced then (q, zx,1)-->* (q,x, al ) iff a = [M®-R® ;
If z Is not prebalanced, (g, z, 1) is blocked.
Pf: By induction on z.
basic case: z = e. Then (g, zx,L1) = (g, x,1) 2° (g,x, al ) iffa = [L®@-
R(2)
Inductive case: z = ya, where a is '[' or ']".
case 1: z =y[.
If v is prebalanced, then so is z. By ind. hyp. (q, zx, 1) = (q,Y[, 1) --
>* (q, [X, [L(Y)-R(Y)J_) -->(q, X, [[L(Y)-R(Y)J_) =(qg, X, [L(Z)—R(Z) 1).
If y is not prebalanced, then, by ind. hyp., (g, vy, L) is blocked and
hence (q, Y[, 1) is blocked as well.
case 2: z =Y].
If y is not prebalanced, then neither is z. By ind. hyp. (g, vy, 1) Is
blocked, hence (qg, y], 1) is blocked
If y is prebalanced and L(y) = R(y). Then z is not prebalanced.
By ind. hyp., if (g, y],)--=>* (q,], al ) then a = [F®@-R®@ = e but
then (q,],L ) is blocked. Hence (qg, z,L) Is blocked.



Finally, if y is prebalanced and L(y) = R(y). Then z is prebalanced,
and

(q,y]X,J_)——>* (q,]X, [L(y)_R(y) J—) T Ind hyp
> (g, X, [FORDLL ) - (iii)
= (q, X, [FM®-R@ L)
On the other hand, if

(q,y]x,1L)--=>* (g,X, alL ) .Then there must exist a cfg (g, ]x, b) such
that

(q’y]X’J—)__>* (q’ ]X’ b) --=>* (CI;X; al )
But then the intructions executed in the last part must be IV* |1l IV*.
If (q, Ix, b) --== v+ (@,X, @l ), then b= 1M[1L"al . But by ind.
hyp., b =Ltf)-R® 1|  hence m=0,n=0and a =f)-RM-1 ]

Pf [of theorem 1] : Let X be any string.

If X is balanced, then it is prebalanced and L(x) — R(x) = 0. Hence, by
lemma 1, (g, xe,1)-->* (q, ¢, [°L) --=> ,, (9, € €). As aresult, X is
accepted.

If X is not balanced, it is not prebalanced. Hence, by lemma 1, (g, x,1)
IS blocked and is not accepted.



The set {ww | w € {a,b}*} is known to be not
Context-free but its complement

L, = {a,b}*-{ww |we {a,b}*} Iis.
Exercise: Design a NPDA to accept L, by empty stack.

Hint: x € L, iff
(1) |x] is odd or
(2) x = yazybz’ or ybzyaz’ for some y,z,z’ € {a,b}*
with |z]|=]|Z’|, which also means
X = yay’ubu’ or yby’uau’ for some y,y’,u,u’ e
{a,b}*
with |y|=]ly’| and |u|=|uU’].



M= (Q,S,G,d,s,,F) : a PDA
Let u, t : two new states ¢ Q and
¢ . a new stack symbol ¢ G.

Define a new PDA M’ = (Q’,5,G’,d,s’, ¢, F’) where
Q=QU{u,t}, G=GU{e}, s =u, F ={t}and
d=dU {(u,e ¢)-=>(s, Le) } //push L and call M

U{(f, e A)-=>({tA)|feFand A e G } /* return to M’
after reaching final states */
U {(t, eA) --=> (t,e) | A € G’ } // pop until EmptyStack
Diagram form relating M and M’: see next slide.
Theorem: L(M) = L_(M’)
pf: M accepts x == (s, x, L) --=", (q, e, g for some q

e F
== (U, X, ¢ ) __>M’ (51 X, Le ) __>nM’ (q1 e, g‘) __>M’ (t1

€,g¢)

-->*.. (,e, ) == M’ accepts x by empty stack.



From final state to empty stack:

*: push L and call M

+: return to t of M’ once reaching final states of M
++: pop all stack symbols until emptystack




Conversely, M’ accepts x by empty stack
== (U, X, ¢ ) __>I\/I’ (81 X, L& ) __>*I\/I’ (q1 Y, 9 ‘) --= (t’ Y, g‘)
—_>*
(t,e,e) forsomeq e F
y = e since M’ cannot consume any input symbol after it
enters state t. == M accepts x by final state.

Define next new PDA M’ = (Q’,5,G’,d’,s’, ¢, F') where
Q=QU{u,t}, GG=GU{e}, ss=u, F ={t}and
d’=dU {(u,e ¢)--=>(s, Le) } // push Land call M

U{(p,ee) =(t,e) | peQ }/* return to M” and accept
If EmptyStack */

Diagram form relating M and M”’: See slide 15.



Theorem: L, (M) = L{(M”).
pf: M accepts x == (s, X, L) --=>", (q, e, e
== (U, X, ¢ ) > (S, X, Le)-->".(q,e,ees) >, (e,
== M” accepts x by final state (and empty stack).

Conversely, M accepts x by final state (and empty stack)
== (U, X, ¢ ) Eata Vil (51 X, L& ) __>*M” (q1 Y, ‘) Eata Vil (t1 € e) f
some state q in Q

==y = e [and STACK= ¢] since M’ does not consume any input
symbol at the last transition ((q, e, ¢ ), (t, e)

== M accepts X by empty stack.
QED



From emptystack to final state (and
emptystack)

*: push 1 and call M
+: If emptystack (i.e.see ¢ on stack) ,
then pop ¢ and return to state t of M”




Every CFL can be accepted by a PDA.
G=(N, S,RS):acCFG.
wlog assume all productions of G are of the form:
A -=> c B,B,B;..B, (k=0) and c € S U {e}.
note: 1. A -> e satisfies such constraint; 2. can require k< 2.
Define a PDAM = ({g}, S, N, d, g, S, {}) from G
where
g Is the only state (hence also the start state),
S, the set of terminal symbols of G, is the input alphabet of N\
N, the set of nhonterminals of G, is the stack alphabet of M,
S, the start nonterminal of G, Is the initial stack symbol of M,

{} is the set of final states. (hence M accepts by empty
stack!!)

d={ ((a.c,A), (d, B4B,..By)) | A->CB;B;B3..By € P}



G: 1.S->[BS (a9, [, S) --=> (g, B S)

2.S -> [ B (q1 [1 S) -—= (q7 B)
3.S-> [ SB ==>d: (q,[,S) --= (g, S B)
4.S->[SBS (0, [,S) -—=(q, SBYS)
5.B -> ] (q1 ]1 B) ——= (q7 e)

L(G) = the set of nonempty balanced parentheses.

leftmost derivation v.s. computation seqguence
(see next table)

St->*; [[[11[11 <==> (a, [[OI01, S) —>*y (@, & €



sentential form of left-

configuration of the pda

s epppilist most derivation accepting x

S CF [[[11[]1].S)
3 [SB Q. [ L1 [11.SB)

4 [[SBS B (CI,[[SBSB[)]] [11

5 ([ [BBSB (CI,[[I[BBSB])][]],
5 [[[ IBSB @, [[[] 1[1].BSB)
5 [[[] ISB @ [[[]] [1].SB )
2 [[[]][BB @ [[[]]1 11,BB )
[[[1]1I[]B @ .[[[]][] ,B)
5 [LICTT0]1 @ .[[[1]1[]] )




_.emma 24.1: For any z,y € S*, ge N*and A € N,
At-->"g zg iff (q,zy,A) -->" (A, Y, 9

=x: S -->3%; [ [ [BBSB <===> (q, [[[ 1111 , S) --=3y (q, 1111, ¢t
of: By ind. on n.

Basis: n=0. A-->0, zg iff z=eandg=A
Iff (q1 Zy, A) — (q’ Y, g) Iff (q1 Zy, A) __>OM (q1y1g)
Ind. case: 1. (only-if part)
Suppose A ---=>n*1. 7z g and B -> cb was the last rule applied.
l.e., AL->n; uBa '-->5ucba=2zg with z=uc and g = ba

Hence (g, ucy, A) --=>", (q, cy, Ba) // by ind. hyp.
-->y (q, y, ba) // since ((q.c,B),(q, b))



2. (if-part) Suppose (q, zy, A) --=>"+*1(q, vy, 9 and
((g,c,B),(q, b)) e d is the last transition executed. I.e.,

(q, zy, A) -->", (g, cy, Ba) -->, (q, vy, ba) with g = band z =
for some u. But the
A L--=>n. uBa // by ind. hyp.,
l--> ucba=2zg //sincebydef. B->cbeP
Hence At-->"*1. 7z g QED

Theorem 24.2: L(G) = L(M).

pf: X € L(G) iff S b-->*, x
ift (q, x, S) -=*y (q, e, )e
Iff x e L(M). QED



Claim: Every language accepted by a PDA can
be generated by a CFG.

Proved In two steps:

1. Special case : Every PDA with only one state has
an equivalent CFG

2. general case: Every PDA has an equivalent CFG.

Corollary: Every PDA can be minimized to an

eguiva

lent PDA with only one state.

pf: M - a PDA with more than one state.

1. ap
2. ap

oly step 2 to find an equivalent CFG G
oly theorem 24.2 on G , we find an

eguiva

ent PDA with only one state.



M= ({s}, S,G,d s, L, {}) : a PDA with only one
state.
Define a CFG G = (G, S, P, 1) where

P={A->cb|({q,c A, (q,b)e d}

Note: M === G is just the inverse of the
transformation :

G ==> M defined at slide 16.

Theorem: L(G) = L(M).
Pf: Same as the proof of Lemma 24.1 and Theorem
24.2.



How to simulate arbitrary PDA by CFG ?
Idea: encode all state/stack information in nonterminals !!
WIlog, assume M = (Q, S, G, d, s, L, {t}) be a PDA
with only one final state and M can empty its stack
before it enters its final state. (The general pda at
slide 15 satisfies such constraint.)

LetN <« Q X G" X Q . Elements of N are written as

e e
DefineaCFG G = (N,|S, <slt>, P ) where

P={ <pAr> 1 B, ..B r=

I ((p,C,A), (q1 BlBZBk)) < d,kZO, ceSU {E

rf—ﬁ'l



We want <qgB,...B, r > to simulate the computation process in
PDA M:

(9, wy, B1B,..B\b) |-..]- (b y, b) iff <gB;..B,r=>*w

Hence: if k = 0. ie., <gB;B,...B,r> = <qger>, we should have
<qr=> > e If g = r and
<gr> hasnorule ifg#r
If k > 1. Let B,B,...B, = B,D, , then :
<QgB;D,r > 2 S,1c0 <gqB,uU;> <u;D,r=
2 Su1eo Suzeo <0BjuU;> <u;B,u,> <u,D,r>
2> ..
2 Suieo Suzeo -+  <Q9Bu;><u,B,u,>..<u, ;B U ><U,D,r=
2 Suieo Suzeo -+ <QB;u;><u;B,u,>..<uy B, r>



(p, ¢, A) --> (g, B,B,...B,)

C X;Xo...
C X1 Xos...
9 ,
p p > A t2 Bl ql
21 C|u g q: | Bg q;
Buli Oxs
_t
We want to use <pAg> >* w to simulate Ok-1 | Bk tqf_ 2
the computation: (p, wy, Ab) 2%, (d, y, eb 2| C
So, if (p,c,A) 2, (g, a) we have rules : t1] L|t

<p Ar>->c <qar>for all statesr.




<pAr>-c<ga
r=

How to derive rules for the nonterminal : <qg a
r>

ecase 1: a = B,B,B;..B, (n > 0)
c=><gar=>=<qB;QB,QB3Q..QB,r=
c=><qgar>-=><gB;q;,><q; B,q,> ..
o <q .., B, r>= for all states q,,05,...,q .1 In Q.

e case2: a = e.
cQ=r =><qgar>=<qer>-> e
g !'=r == <q er > cannot derive any string.

- Then <pAg> - Cc <geg> = C.



Note: Besides storing sate information on the nonterminals, G
simulate M by guessing nondeterministically what states M will
enter at certain future points in the computation, saving its
guesses on the sentential form, and then verifying later that th
guesses are correct.

_.emma 25.1: (p,x,B,B,...B,) --=", (q,e,e Iff
$4d;,d;, -0k (=0) such that

<pB,d;><dq;B,0,>...<qy1B,g> "2>"g X. (*)

Note: 1. when k =0 (*) is reduced to <pg=> "=>"; X
2. In particular, (p,x,B) --=>", (q,e, eiff <pBg> "=>"; x.
°f: by Ind. on n. Basis: n = 0.
LHS holds iff ( x = e, k=0, and p =q ) iff RHS holds.



Inductive case:
(=>:) Suppose (p,x,B;B,...B,) --="*1 , (q,e,¥ and
((p,c,B,),(r,C,C,...C)) Is the first instr. executed. I.e.,

(P,x,B,B,...B,) --=y (I, ¥,C,C,..C, B,..By) --=" (q,e, B
where x = cy.
By ind. hyp., $statesry, -t 4,(Fm= d1), Us,... x.; With
<rC,r;=<r,Cor,>...<r,,C,0,><q;B,0,>...<q 1B, Q> ">"c Y
Also by the definition of G:
<pB,q,> 2 ¢ <r,C;r;><r,C,r,>...<r,, ,C,a,> Is a rule of G.

Combining both, we get:

<pB.g,> <q;B,0,> ...<q ;Ba,>

-2¢ € <r,Ciri=><r,Cor,>...<r,,,C0,> <q,B,0,> ..<q,_,B,q,>
Lo cy (=x).



(<=:) Suppose <pB,q,><q; B, 0,>...<q \.; B, > ">""5 X.
Let <pB,q,=>=2>c<r,C;r,=><r; C,r,>... <r,,C,,q;= € P --(*
be the first rule applied. i.e., Then
<p B; 0;= <d; B, 02> ...<q |1 Bxg=
"6 € <ro Cy 1> <r; Gy 1> <rp, Gy Q1> <0y B, > ... <qy4F
2" ey (=Xx)
But then since, by (*), [(p, c, B1), (ry, C,C,...C.)] — (*%) Is an
M,
(p.X,B;...B) ===y (fp, ¥» C1C5..CB,..B,)  --- By (**)
--=>n . (q,e,g --,byind. hyp. QED
Theorem 25.2 L(G) = L(M).
Pf: x e L(G) Iff <slt> —>* X
Iff (s,x,1) -->*, (t,e, ----Lemma 25.1
Iff x e L(M). QED



L = {xe {[,1}* | X Is a balanced string of
[ and ]], i.e., #](X) = 2 #[(X) and all “]]“s must
Ooccur In pairs }

Ex:LIJLLITIlel but[1[11]¢€L.
L can be accepted by the PDA

M=(Q,S,G,d p, L{t}), where
Q={p.a.t}, S={L1}. 6 ={A, B, L}

and dis given as follows:

P, [, L) --= (p, AL),

(P.LA) --= (p.AA), —
(. 1. A) > (a. ©). /
(. ], B) --= (p, ©), =

(p.ed) —> (L,8) (q) ®



M can be simulated by the CFG G = (N,S,
<p.Llt>, P) where
N={<XDY>]| XY e{p,gq,t} and D € { A,B,
L} X

and P is derived from the following pseudo rules :
P, [, L)-=(p, A): <pl?2>->2>] <pAL?>
(.[.A) --= (p.AA) @ <pA?> > [ <pA?A?>
(p1 ]1 A) -—= (q7 B)7 - <P A?> > ] <CIB7>
This produce 3 rules (? =porqort).
(q1 ]1 B) ——= (p1 e)1 » <qB?> > ] <p e?>
This produces 1 rule :
( ? = p, but could not be g or t why ?)
<qB?>->]<pe?> =><qgBp> > ] <pep>
20 ]
(p,e, L) = (t,©) : <pl?= > <te?=
This results iIn <plt> 2> e (since <tet> > e.)



<p L?> > <pAL?> = resulting in 3 rules : ? = p,
q or t.
<p Lp=>~>[ <pAlp> ---(1)
<plg=-~>[ <pAlg> ---(2)
<plt> 2| <pAlt> ---(3)
(1)—(3) each again need to be expanded into 3
rules.
<pAlp> -2 <pA?><? 1 p> where ?is p or g or t.
<pALlg> -2 <pA?><? 1 q> where ? is p or g or t.
<pALt> -2 <pA?><? | t> where ?is p or q or t.
<p A?,> 2> [ <pA?,A?> resulting in 9 rules:
Where ?, = p,q, or t.
<p Ap> > [ <pA?,><?,1p> ---(1)
<pAQg> 2> [ <pA?,><?,10> ---(2)
<pAt> 2> [ <pA?,><?%lt> ---(3)



